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Classical force appropriation methods are used in the identi"cation of linear systems to
determine the multi-point force vector that will induce single-mode behaviour, thus allowing
each normal mode to be identi"ed in isolation. This paper presents an extension to this
linear approach that will enable the approximate identi"cation of multi-degree-of-freedom
(d.o.f.) systems with weak non-linearity on a similar basis. The classical linear modal model
is used, with additional terms included to represent the direct non-linear restoring forces of
the system. Using this force appropriation for non-linear systems (FANS) method, a force
vector with harmonics present is derived using an optimization approach such that the
response of the system is restricted to that of a target mode, but in the non-linear region. The
response obtained from several force levels is then curve "tted using the restoring force
method applied in linear modal space so as to yield the direct linear and non-linear modal
parameters for the target mode. The method is applied to a simulated two-d.o.f. example and
good agreement is found between estimated and true parameters. An extension to the
identi"cation of critical non-linear modal cross-coupling terms is proposed.

( 2000 Academic Press
1. INTRODUCTION

Some form of modal testing [1] is commonly performed on a wide range of structures in
order to validate the mathematical dynamic model used for prediction of response, stability
etc. Classical linear approaches for the identi"cation of the model may be categorised as
phase separation or phase resonance methods. Phase separation methods involve some form
of curve "t to experimental data presented in the time or frequency domains, whereas phase
resonance methods seek to excite and identify each undamped normal mode of the
structure, one at a time. In the aerospace industry, the use of phase resonance methods is
still common, though the process is often termed normal mode tuning or force
appropriation [2}4]. Force appropriation methods permit the determination of a set of
monophase forces for multiple exciters that will induce single mode behaviour when applied
at the relevant undamped natural frequency. This process is otherwise known as &&tuning''
a mode. Once a normal mode has been tuned, the mode shape, modal damping, modal mass
and undamped natural frequency may be estimated. Methods for determination of the
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24 P. A. ATKINS ET AL.
appropriated force vector are iterative or direct, the latter being based upon the measured
frequency response function matrix.

The force appropriation approach works fairly well for linear multi-degree-of-freedom
(d.o.f.) systems. However, in practice, structures have non-linear characteristics that can
in#uence their dynamic behaviour signi"cantly. In the aircraft industry, for which this paper
is particularly relevant, non-linearity can in#uence response, loads and #utter (stability).
Problems emerge in using force appropriation when the structure is non-linear because the
method fails to tackle the change of dynamic behaviour with force level and the model
derived is still pseudo-linear, giving di!erent results at di!erent levels. In the aerospace
industry, a common current practice is for non-linearity to be explored experimentally by
seeking to &&tune'' modes at some pseudo-resonance condition using di!erent force levels
and to observe the change of tuned frequency with force level. This approach is inadequate,
because it fails to give information that could be used reliably for prediction of non-linear
e!ects. Also, the response shape alters because other modes become involved in the
response once the behaviour becomes non-linear. Some information about the type of
non-linearity present may be found from such an approach, but no model of the
non-linearity is obtained. It would be extremely bene"cial if a non-linear dynamic
multi-d.o.f. model of an aircraft could be derived experimentally; the impact of non-linearity
upon response, loads and #utter could then be assessed. However, any non-linear model
derived should ideally be easy for the engineers to relate to and should "t into existing
predictive methodologies. In this paper, the objective is to present such a method. Its
application could extend beyond the aerospace sector to other structures with weak
non-linear characteristics.

Whilst the identi"cation of linear multi-d.o.f. systems is well established, that for
non-linear systems is still relatively under-developed. A number of methods permit the
presence of non-linearity to be detected and others give an indication of its type. However,
few methods yield a non-linear mathematical model that can be used to reproduce the
response of the system, and most of these models are not readily used and understood in
practice by engineers.

The NARMAX method [5] yields a non-parametric discrete time model and is
time-consuming for multi-input/multi-output use due to the combinatorial explosion of
model terms. Also, it does not lend itself to physical interpretation of the model.
A multi-input/multi-output multi-d.o.f. non-linear NARMAX model of an aircraft would be
enormous and would not relate readily to other methodologies used in the aerospace
industry. The higher order frequency response method [6] allows the translation of
NARMAX models into continuous time and also eases the problem of obtaining non-linear
system responses; however, it is also di$cult to use and interpret physically. The linearized
frequency domain approach [7] is promising and can yield a physical parameter model with
additional linearized sti!ness and/or damping terms; it has only been applied to relatively
small systems so far. The selective sensitivity approach [8] can be used to reduce the
dimension of the model space through the use of selective excitation, somewhat akin to
force appropriation, and the method has recently been extended from linear systems to
non-linear systems up to third order. The dimensional reduction permits the entire system
to be identi"ed via a sequence of low-dimensional estimation problems, but the method
awaits experimental validation. A further approach is that of identifying the so-called
non-linear normal modes [9, 10]; these arise from a non-linear transformation applied in
order to uncouple the known equations of motion and these &&modes'' assist in
understanding the non-linear behaviour of systems. However, they are di$cult to relate to
physically because they are not the same as the normal modes of the linear system. Some
methods to identify non-linear modes are under development.
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IDENTIFICATION OF NON-LINEAR SYSTEMS 25
However, the restoring force surface (RFS) method, sometimes called the force-state
mapping method, [11}16] allows a parametric model for a non-linear single or multi-d.o.f.
system to be estimated. One bene"t of the RFS approach for multi-d.o.f systems is that it
permits use of the classical linear modal model, in which modal mass and linear sti!ness
terms are uncoupled and the linear modes may be coupled non-linearly by additional terms
in the equations. The linear part of this model is precisely what is used in the aerospace
industry, amongst many others. It is arguable that none of the other non-linear
identi"cation methods provide a model as recognizable and useable by the engineer because
classical linear modal space is so commonly used.

The RFS method has been demonstrated experimentally only on systems with low
numbers of d.o.f. Unfortunately, in practice, structures have a large number of d.o.f. often
with a high modal density. A classical RFS identi"cation of such structures in modal space
would involve data in which all modes and cross-couplings were present potentially. It
would then lead to a very complex mathematical model with an unknown non-linear model
structure and with very many parameters to determine.

For these reasons it would be advantageous to extend the classical linear force
appropriation approach to non-linear systems in order to reduce the scale of the
identi"cation problem. In this paper, an approach is presented [17}19]*force
appropriation for non-linear systems (FANS)*which allows a special appropriated force
vector to be derived that will result in a non-linear response. The structure is made to
respond dominantly in the target linear mode shape, thereby permitting the direct
non-linear characteristics of that mode to be identi"ed in the absence of cross-coupling
e!ects; any important cross-coupling terms would then be identi"ed subsequently using
a variant of the approach.

It will be shown that the special appropriated force vector can be derived using the
Volterra series [20] if the system parameters are known a priori, or using an optimization
routine in the case of a general identi"cation. Once the contribution of the coupled modes
has been signi"cantly reduced by judicious choice of excitation, the non-linear
characteristics of the target mode can be identi"ed using any single-d.o.f non-linear
identi"cation method. In this paper, the RFS method is used to examine and identify the
non-linear behaviour of the target mode.

The proposed approach therefore permits the scenario in which modes can be divided
into those that behave nominally linearly, and can therefore be estimated using the classical
linear approach, and those which are in#uenced by non-linearity, and whose direct modal
terms may be identi"ed using the FANS methodology. Any key non-linear cross-coupling
terms between particular modes may be treated separately. The outcome of the approach is
therefore an extension to the classical tuning process.

The FANS approach is demonstrated in concept using a d.o.f. simulated system with
a spring grounded cubic sti!ness non-linearity, such that the linear modes are coupled
non-linearly. The modes may be made close in frequency. Results are compared to those
achieved using a classical linear force appropriation approach when it is applied at higher
force levels. Comments as to the range of applicability of the method are included.

2. THEORETICAL BASIS OF NON-LINEAR FORCE APPROPRIATION (FANS)

2.1. BASIC MULTI-DEGREE OF FREEDOM APPROACH

If a general N-d.o.f. non-linear dynamic system is considered, the equations of motion in
physical space (i.e., in terms of coordinates measured by translational sensors) can be
JSV=20003033=Ravi=VVC



26 P. A. ATKINS ET AL.
written as

[m] MxK N#[c]Mx5 N#[k] MxN#Mg
nl

(MxN, MxR N)N"M f N, (1)

where [m], [c] and [k] represent the mass, damping and sti!ness matrices for the linear part
of the system, MxN is the (N]1) vector of the physical displacements, the dot represents the
time derivative, MfN is the vector of physical forces, and Mg

nl
(MxNMx5 N)Nis the vector of the

non-linear restoring forces.
Any N-dimensional co-ordinate system related to these physical co-ordinates by an

appropriate transformation can be used. However, the main systems of interest for
structural dynamics are the above-mentioned physical co-ordinates, and modal co-ordinates
that are commonly used to decouple linear systems, i.e., to diagonalize the parameter
matrices. Modal co-ordinates are obtained by a linear transformation that is su$cient, for
linear systems only, to convert to N-S.d.o.f. systems, provided the damping is proportional
(i.e., the damping matrix is a linear combination of the mass and sti!ness matrices). For
non-linear systems, a decoupling transformation is generally not available. However,
approximations can be obtained using the method of normal forms [21]. The di!erence
between that method and the FANS method proposed here is that FANS produces an exact
decoupling of the equations of motion but only for a speci"c input and at the expense of
losing some of the non-linear interaction terms.

Equation (1) can then be transformed to linear modal space, using the modal matrix of the
underlying linear system, and the classical modal transformation

MxN"[/]MuN, (2)

where [/] is the (N]n) modal matrix and MuN is the (n]1) vector of modal co-ordinates.
Note that n(N, so allowing for a reduction in the size of the model. The transformation
yields the following equations expressed in linear modal space,

[M
u
]MuK N#[C

u
]Mu5 N#[K

u
]MuN#MG

unl
(MuN, Mu5 N)N"MpN, (3)

where [M
u
] and [K

u
] are the diagonal (n]n) modal mass and sti!ness matrices, [C

u
] is the

modal damping matrix, which is diagonal if the linear component of the damping is
assumed to be proportional, and MpN is the applied modal force vector. MG

unl
N is the vector of

non-linear modal restoring forces expressed in linear modal space co-ordinates. In general,
MG

unl
N will be a function of several of the modal displacements and/or velocities; for

example, for the jth mode, the non-linear modal restoring force is represented by the jth
element of MG

unl
N that can be written as

G
unlj

(u
1
, u

22
u
n
, uR

1
, uR

22
uR
n
) . (4)

Thus equations (3) are only coupled by the non-linear modal restoring forces. The linear
parts of the equations are not coupled provided that damping is proportional.

It is important to recognize that when a &&mode'' is referred to in this paper, what is meant
is the mode of the linear part of the system. These &&linear modes'' will in general be coupled
non-linearly by the non-linear restoring forces. There is no approximation involved in this
representation, apart from the modal truncation, commonly found in modal analysis.

The aim of the non-linear force appropriation method (FANS) described in this paper is
to design a modal excitation vector MpN, and eventually a physical vector M f N, that will
excite a linear mode of interest (say the jth mode) into the non-linear region. The excitation
will also eliminate the response of any other modes that are non-linearly coupled to it. The
non-linear behaviour of a single mode may then be examined and identi"ed. The non-linear
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IDENTIFICATION OF NON-LINEAR SYSTEMS 27
modal restoring force in mode j will then be represented simply by

G
unlj

(u
j
, uR

j
). (5)

Then the system will respond non-linearly in the jth linear mode shape since all other modal
contributions are absent, i.e., u

i
"0 when iOj.

Under this type of excitation, the system modal equations could then be written as

m
j
u(
j
#c

j
uR
j
#k

j
u
j
#

F F

G
unlj~1

(u
j
, uR

j
)"p

j~1
G

unlj
(u

j
, uR

j
)"p

j
G

unlj`1
(u

j
, uR

j
)"p

j`1
F F

(6)

It may be seen that the response in all modes apart from the jth mode has been
eliminated. The jth mode equation has the usual direct linear terms, together with direct
non-linear terms. If a modal force pattern, MpN, could be determined that would cause the
system to behave in this way, a single-d.o.f. RFS identi"cation could then be carried out to
identify the direct linear and non-linear terms for the jth mode. The jth mode of a non-linear
system will then have been &&appropriated''. Any signi"cant non-linear coupling terms could
be identi"ed later using a variant of the approach.

For a system with known parameters, the approach for obtaining the appropriated vector
Mp (t )N to excite the jth mode would be to assume that p

j
(t) was sinusoidal at frequency

u (rad/s), obtain the response u
j
(t ) from the jth equation in equation (6) (e.g. using the

Volterra series), and then evaluate p
i
(t) (iOj) by substituting u

j
(t) into the other equations

in equation (6). Note that u
j
(t) and p

i
(t) (iOj ) would include a series of harmonics of u that

would need to be truncated. For a system with unknown parameters, the excitation would
need to be derived using an optimization approach.

2.2. ILLUSTRATION OF APPROACH FOR 2 d.o.f. SYSTEM

The application of such an approach will now be illustrated algebraically using a 2d.o.f.
non-linear system for which the "rst mode is to be excited and identi"ed. It is assumed that
all the parameters are known a priori, which of course will not be the case in practice. Such
an example is included to allow the idea of the FANS method to be seen more clearly.

The system chosen is shown in Figure 1 and is deliberately designed to be symmetric in its
linear components so as to yield very simple mode shapes. The mass, damping and sti!ness
values are m, c and k. The factor a can be altered to in#uence the degree of physical coupling
between the masses and therefore the separation of the natural frequencies, so allowing very
close modes to be represented. The system has a so-called &&spring grounded'' non-linear
cubic sti!ness governed by the parameter b.

The equations of motion in physical space can be shown to be

C
m 0

0 mD G
xK
1

xK
2
H#C

(1#a)c !ac

!ac (1#a)cDG
xR
1

xR
2
H#C

(1#a)k !ak

!ak (1#a)kDG
x
1

x
2
H#G

bx3
1

0 H"G
f
1
f
2
H .

(7)
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Figure 1. Two-degree-of-freedom system.
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The modal matrix of the underlying linear system is

/"C
1 !1

1 1D (8)

where the columns de"ne the two linear mode shapes.
Transforming these equations to linear modal space gives

C
2m 0

0 2mDG
uK
1

uK
2
H#C

2c 0

0 2(1#2a)cD G
uR
1

uR
2
H#C

2k 0

0 2(1#2a)kDG
u
1

u
2
H

#G
b (u

1
!u

2
)3

!b (u
1
!u

2
)3H"G

p
1

p
2
H. (9)

Note that a non-linear identi"cation based directly on this simple model would involve
several non-linear coupling terms, which may or may not be signi"cant in a!ecting the
system response [11, 14, 15].

Now consider isolating mode 1 by constraining the response in mode 2 to be zero by
suitable choice of an appropriated force vector. The determination of this excitation for an
unknown system will be covered in a later section. Thus, setting u

2
"0 in equation (9) leads

to the two equations (similar to equation (6))

muK
1
#cuR

1
#ku

1
#(b/2)u3

1
"p

1
/2 (10)

and

bu3
1
"p

2
. (11)

Now assume that the excitation p
1

is harmonic at frequency u (rad/s), and is given by

p
1
(t)"P

11
cos (ut) (12)

where P
11

is the modal force amplitude, assumed to be known at this stage. For the
non-linear single-d.o.f. system described by equation (10), it is well known that the steady
state response to this excitation will be given by a series of harmonics, namely

u
1
(t)";

11
cos (ut#0

11
)#;

13
cos (3ut#0

13
)#2, (13)
JSV=20003033=Ravi=VVC



IDENTIFICATION OF NON-LINEAR SYSTEMS 29
where ;
jk

and 0
jk

are the amplitude and phase of the kth harmonic for the jth modal
response ( j"1 in this case). In this example, the system contains only a cubic sti!ness
non-linearity so only odd harmonics need be included in the response; if a quadratic
non-linearity was present then even harmonics would also appear.

The amplitude and phase values for each harmonic in u
1

could be determined by, for
example, a Harmonic Balance carried out on equation (10), assuming that the system
parameters and excitation amplitude and frequency are known.

Once the response u
1
(t) is determined, it may be substituted into equation (11) and the

second modal force p
2
(t ), required to meet the condition u

2
"0, may also be expressed in

the form of a series of harmonics by performing a trigonometric expansion. The result is of
the form,

p
2
(t)"P

21
cos (ut#t

21
)#P

23
cos (3ut#t

23
)#2, (14)

where P
jk

and t
jk

are the amplitude and phase of the kth harmonic for the jth modal force.
Thus, the force vector MpN de"ned by equations (12) and (14) will yield a response only in

the "rst linear mode shape. Note that the p
2
excitation involves a number of harmonic terms

in addition to the fundamental component. In classical linear force appropriation with
proportional damping, the modal force would be p

2
"0. (It should be noted that at this

stage, only the modal force vector is being considered; later, the conversion to a physical
force vector will be covered.)

If the system were unknown a priori, and if the modal forces could be estimated by some
other means, then the system could be made to respond in u

1
only. Measurements of this

response at several excitation amplitudes could then be used to identify the direct non-linear
term b/2 for mode 1 in equation (10) as well as the direct linear modal terms. The exercise
could then be repeated for mode 2. An uncoupled non-linear model for the two modes of the
system in linear modal space would then be available. If the non-linear modal couplings
were deemed to be important, then they would be identi"ed separately (see later).

The bene"ts of this approach are not obvious for a 2d.o.f. system. However, for a system
with a larger number of modes, a full non-linear identi"cation could involve an enormous
number of terms. Instead, it would be possible to use the FANS method to identify the
direct non-linear behaviour of a limited number of modes where non-linear behaviour is
known to be important. Such an approach is consistent with a normal mode tuning
philosophy being extended into the non-linear region. Any key non-linear cross-coupling
terms would be estimated separately using an extension of the approach.

2.3. VOLTERRA SERIES APPROACH FOR DETERMINATION OF EXCITATION

In this section, the FANS idea will be illustrated numerically for the above 2d.o.f. system
using an approach based upon the Volterra series [20]. It is still assumed that the system
parameters are known a priori, so the modal force pattern may be determined from the
system model.

The Volterra series is essentially a functional Taylor series which can represent a large
class of non-linear mappings x(t) to y(t). The expansion begins

y(t)"P
=

~=

h
1
(q)x (t!q) dq#P

=

~=
P

=

~=

h
2
(q

1
, q

2
)x (t!q

1
)x (t!q

2
) dqdq

2
#2, (15)

where h
i
are the Volterra kernels (or generalized coe$cients) of the ith order. The general

term in the series is

P
=

~=

2P
=

~=

h
n
(q

1
,2 ,q

n
)x (t!q

1
)2x (t!q

n
) dq

12
dq

n
. (16)
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30 P. A. ATKINS ET AL.
As for linear systems, non-linear systems have a parallel frequency domain representation in
terms of the higher order frequency response functions (HFRFs) which are de"ned as the
Fourier transforms of the Volterra series kernels

H
n
(u

1
,2 ,u

n
)"P

=

~=

2P
=

~=

h
n
(q

1
,2 ,q

n
) e!i (u

1
q
1
#2#u

n
q
n
) dq

12
dq

n
. (17)

The Volterra series can be used to predict the response of a known non-linear system. The
response can be expressed, using the series in the frequency domain, as a combination of the
HFRFs. For example, the response to a harmonic input x (t)"X cosut is

y (t)"XDH
1
(u) D cos (ut#LH

1
(u))#

X2

2
MDH

2
(u, u)D cos (2ut#LH

2
(u, u))

#H
2
(u, !u)N#O (X3). (18)

The values of the HFRFs for a particular system may be calculated using harmonic probing
[22] if the system parameters are known. If these HFRFs and the input force are substituted
into the frequency domain response representation, an expression for the response can be
derived as a series of harmonics as in equation (18).

The Volterra series was used to calculate mode 1 response and hence a force pattern that
would cause the response of the two-d.o.f. non-linear system shown in Figure 1 to be
dominated by mode 1. System parameters of m"1)0 kg, k"3947)84 N/m, c"3)77 N s/m,
b"5)0]109 N/m3 and a"0)22 were used, giving natural frequencies of 10 and 12 Hz for
the underlying linear system; the modal matrix is the same as that in equation (8).
A harmonic force p

1
(t), as de"ned in equation (12), was chosen to have an amplitude of

P
11
"0)05 N and a frequency of 10 Hz; the low excitation level was used to ensure the

convergence of the Volterra series.
The response u

1
of the e!ective single-d.o.f. system described in equation (10) was

calculated in the frequency domain using Harmonic Probing; in particular, the amplitudes
and phases of the fundamental, third and "fth harmonics of the response were determined.
The second modal force p

2
was then calculated using a trigonometric expansion of this

response, as de"ned in equation (11); only terms up to the "fth harmonic were retained. The
modal force vector MpN for non-linear force appropriation was then known.

The response to this modal force vector was then simulated in the time domain using the
equations of motion of the system written in linear modal space, namely equation (9). These
equations were solved using a fourth order Runge}Kutta routine where the time step was
0)0001 s; the relative contributions of the two modes were then evaluated to demonstrate
that the second mode response was nominally zero.

By way of comparison, the force vector for tuning mode 1 using the classical linear force
appropriation approach would include a "nite modal force in mode 1 but a zero value in
mode 2; this vector was also applied to the same system. It should be noted that this
excitation has no harmonics. In this case, a response involving only mode 1 would be
expected if the system were linear. The presence of non-linearity will detract from the
e!ectiveness of the classical linear method.

To demonstrate how well the force vector for the non-linear appropriation has reduced
the contribution of the second mode compared to the classical linear appropriation
approach, the ratios of the root mean square (r.m.s.) displacement of the modal responses of
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TABLE 1

Comparison of ratio of mode 1/Mode 2 response to linear and non-linear appropriation for the
2 d.o.f. Non-linear system

Force vector

P
11

P
21

t
21

P
23

t
23

Approach r.m.s. u
1
/r.m.s. u

2
(N) (N) (rad) (N) (rad)

Linear force 88)68 0)05 0)0 0)0 * *

appropriation
Non-linear force 121 684 0)05 0)0043 1)674 0)0014 5)024
appropriation (includes 5th harmonic)
(Volterra)
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modes 1 and 2 are shown in Table 1. For brevity, only the fundamental and third harmonic
components of the force patterns are shown. It can be seen from this table that the special
excitation derived using the Volterra series has reduced the response of mode 2 signi"cantly,
when compared to the classical approach. The r.m.s. ratio with the "fth harmonic omitted
was 121 680, an almost identical value. Similar results were obtained at di!erent excitation
frequencies and force levels, up to the limit of convergence for the Volterra series.

Clearly, the FANS approach has succeeded in all but eliminating mode 2 response in
comparison to the linear approach. The performance of the linear approach would
deteriorate yet further as the force level, and the degree of non-linearity in the response,
increased.

3. OPTIMIZATION APPROACH TO FORCE VECTOR DETERMINATION

It has been shown in the previous section that the Volterra series can successfully be used
to calculate a modal force vector that will enhance the mode of interest and reduce the
contribution of any coupled modes. However, as discussed earlier, it is only possible to use
the Volterra series to calculate this modal force pattern if the linear and non-linear system
parameters are known. However, for a real identi"cation problem, a model of the system
will not exist a priori, so such an approach will not be feasible.

However, it should be possible to use an optimization approach to estimate the amplitude
and phase components of the modal force vector that would minimize the contribution of
any coupled modes and so enhance the response of the target mode. In this section, such
a methodology is considered. It is interesting to note that there is a corresponding family of
equivalent linear force appropriation methods, each based upon iterative adjustments of the
force vector [3].

3.1. OBJECTIVE FUNCTION IN MODAL SPACE

The objective function for the optimisation must be an expression that will be minimized
when the contribution of any coupled modes is minimized and that of the mode of interest
maximized. Again consider the 2d.o.f. example given above. In this case, an objective
function that was a ratio of the two RMS modal displacements would ful"l this
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Figure 2. Variation of objective function with P
21

and P
23

.

Figure 3. Variation of objective function with P
21

and /
21

.

32 P. A. ATKINS ET AL.
requirement, namely
J
1
"r.m.s. u

2
/r.m.s. u

1
(19)

where the r.m.s. quantities would be calculated from one or more cycles of the fundamental
response components. This function will be minimized if the response is dominated by
mode 1.

If it is assumed that the fundamental and third harmonic components of p
2

would be
su$cient to represent the force vector, then the number of variables in the optimization for
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Figure 4. Variation of objective function with /
21

and /
23

.
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the 2d.o.f. example may be reduced considerably. A four dimensional optimization will
result, with the variables being P

21
, t

21
, P

23
and t

23
.

As an example to show the objective function for this problem, P
11

has been "xed at
0)1 N to give noticeable non-linear behaviour, and the fundamental excitation frequency
was chosen to be 10 Hz, the natural frequency of mode 1 of the linear system. Surfaces that
demonstrate the variation of the objective function with these variables are shown in
Figures 2}4; for each surface, two variables were held constant whilst the remaining two
were varied. As the objective function in this case was a function of four variables, these
surfaces only represent part of its behaviour.

3.2. OPTIMIZATION METHODS

Several optimization methods are possible and were evaluated in this work, namely the
Variable Metric [23], Downhill Simplex [23], Genetic Algorithm [24], and Simulated
Annealing [25] approaches. These methods were chosen to represent di!erent types of
optimization scheme. They were applied to the 2d.o.f. system in order to investigate which
method would give the best results in terms of minimizing the objective function and the
number of iterations required.

The <ariable Metric approach is a gradient method, so it requires that the function to be
minimized is continuous and di!erentiable. It will also converge only to the nearest
minimum, which may be global or local. The other methods are directed random searches
and as such can "nd a global minimum because they search over varying areas of the
solution space. The Downhill Simplex method requires only that the function is continuous
whereas the Genetic Algorithm and Simulated Annealing methods can even optimize
a function that only exists at discrete locations in the variable space. (This can be
advantageous when non-linear systems are considered because the optimization will not fail
if a discontinuity occurs, such as that caused by a &&jump'' for a system with a cubic sti!ness
non-linearity.)
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TABLE 2

Comparison of results from optimization methods and volterra series for the 2d.o.f. non-linear
system

Optimized Optimized modal force vector
objective

Optimization No. of function function P
21

P
23

t
21

t
23

method evaluations r.m.s. u
1
/r.m.s. u

2
(N) (N) (rad) (rad)

Genetic algorithm 40]103 691 0)00426 0)00074 1)7995 5)2943
Simulated annealing 1127 3300 0)00428 2)25]10~5 1)6646 3)6544
Downhill simplex 526 7584 0)00434 0)001250 1)6746 4)4193
Variable metric 457 4)2]106 0)00434 0)001452 1)6746 5)0240
Volterra series * 1)87]105 0)00434 0)001457 1)6746 5)0240
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It should be noted that the type of minimum found is not important in this case. It is only
important that the minimum found is su$ciently deep since the depth of the minimum is
related to the reduction in the contribution of the coupled mode(s). Full explanations of
these well-known optimization methods may be found in the references cited above.

The four approaches were compared using the same model. The contribution of mode
2 to the response of the non-linear 2d.o.f. system was to be minimized and the response of
mode 1 enhanced. The "rst modal force was chosen to be 0)05 N and the excitation
frequency was 10 Hz. The linear force appropriation results were used as a starting point for
each optimization. A Runge}Kutta simulation was carried out using the force vector results
for each iteration of the optimization, in order to obtain the steady state response of the
system to the modal force vector.

The minimum objective function reached by the optimization, the resulting optimized
modal force vector, and the number of function evaluations, are shown in Table 2 for all
four approaches; the force vector derived using the Volterra series in section 2 above is
included for comparison.

It can be seen from this table that the optimized force vectors are similar to those
calculated using the Volterra series. The force pattern derived using the variable metric
method was actually extremely close to that calculated from the Volterra series. In fact, the
only signi"cant deviation is in the fourth signi"cant "gure on P

23
but this di!erence is still

su$cient to boost the objective function by an order of magnitude.
This process was repeated [17] for a range of force levels, damping levels and closeness of

natural frequencies (varying a to yield natural frequencies of 10 and 10)12 Hz). In all cases
the characteristics of the results in Table 2 were seen. The Genetic Algorithm and Simulated
Annealing methods performed badly and required far more function evaluations. The
Downhill Simplex method sometimes used somewhat fewer evaluations than the Variable
Metric, but the latter method consistently yielded by far the best objective function. The
Variable Metric method was therefore used in the examples that follow.

4. ESTIMATING SYSTEM PARAMETERS FROM APPROPRIATED RESPONSES

After the application of the optimization approach, a single-d.o.f. identi"cation method
may be used since the response will then be dominated by the target mode. In this work, the
RFS method [11, 14, 15] was used, based on a modal space model. The idea of the method
is that the modal restoring force may be estimated from knowledge of the modal force, the
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modal acceleration and the modal mass (usually assumed or estimated from some other
approach). The modal restoring force may then be plotted against the modal velocity and
displacement and a least-squares curve "t performed to provide a mathematical model.

The e!ect of coupled mode(s) will have been minimized so the modal restoring force
surface is that for a single mode and will yield visual information about the type of
non-linearity contained in the mode of interest, provided a suitably high level of excitation
is used. This information can be used to reduce the number of terms in the curve "t of the
modal restoring force surface.

The nature of the FANS method means that the excitation must be harmonic. This type
of excitation can lead to poor curve "t results, due to the problem of linear dependence [25],
if the level of excitation is not high enough to induce harmonics in the response. To ensure
that suitable levels of excitation were included, a multiple sine type of excitation was used in
which harmonic excitation at several amplitude levels was applied. An optimization was
performed to yield a response dominated by the target mode at each excitation level. The
modal restoring force time histories from all amplitude levels were then used simultaneously
in a least-squares curve "t. The method of mass estimation developed by Worden and
Tomlinson [16] was used; here an initial modal mass value is estimated and an error term is
included in the curve "t model.

4.1. SIMULATED EXAMPLE IN MODAL SPACE

The proposed method was applied to the "rst mode of the non-linear 2d.o.f. system.
Optimized excitation patterns were calculated for several values of P

11
, namely 0)05, 0)075,

0)1, 0)25, 0)5, 0)75 and 1)0 N with the simulations being performed in modal space. All the
minimum objective functions all had values above 10 000. The composite restoring force
surface for mode 1, obtained from all the force level data, and a sti!ness projection of the
surface, are shown in Figures 5 and 6. The shape of the surface projection is consistent with
a cubic sti!ness non-linearity for mode 1.
Figure 5. Modal restoring force surface for mode one.
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Figure 6. Sti!ness projection of model restoring force for mode one.

TABLE 3

Parameter estimates for mode 1 for the 2 d.o.f. non-linear system

Parameter True parameter Estimated parameter

k (N/m) 3947)84 3962)9
c (Ns/m) 3)77 3)53
b (N/m3) 5)0]109 4)99]109
m (kg) 1)0 1)0
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Mode 1 restoring force was then curve "tted against modal displacement and velocity to
give the direct linear and non-linear parameters for that mode, and hence the physical
parameters deduced from equation (10). A comparison between the estimated and true
parameters obtained is shown in Table 3.

It can be seen that good agreement was achieved between estimated and true parameters.
Slight di!erences would be due to (a) not allowing a steady state condition to be reached to
a su$ciently close tolerance and (b) only including third harmonic terms in the series
representations for the modal force. The former is believed to be the prime reason. Damping
is always the parameter that is most sensitive to error in any identi"cation and so it is not
surprising that this is where the error is greatest.

5. NON-LINEAR APPROPRIATION IN PHYSICAL SPACE

5.1. POSSIBLE APPROACHES

So far, for simplicity, the analysis has been performed in modal space, with modal forces
derived and modal displacements used in the objective function. However, in practice,
measurement transducers only provide data in physical space and forces must be applied
via physical exciters.

The approach proposed here would be to force the system to respond in the physical
linear mode shape for the target mode, using a revised objective function that only requires
knowledge of the linear physical mode shape for that mode. The optimization would then
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be performed using amplitude and phase parameters for the physical forces. The number of
physical forces to be applied would, in the "rst instance, be equal to the number of modes
that are e!ective in the frequency range of interest (as for linear appropriation). However,
this choice of the number and location of exciters for larger and more complex systems
needs further consideration, given that other modes at multiples or fractions of the
excitation frequency may be excited for a non-linear system.

Clearly, constraining the response of the system to be in one of its linear mode
shapes requires that this mode shape be known before the optimisation is performed.
In the general experimental case, the mode shapes will not be known. However, for most
types of non-linearity, the responses of the system at low amplitude levels will tend to the
response of the underlying linear system (the problem non-linearity would be friction, where
the non-linearity is most evident at low response levels). Thus, if each mode shape of interest
for the system could be measured at low excitation levels using a classical force
appropriation method, this would provide a reasonable approximation to the desired linear
mode shape. The appropriation may then be extended into the non-linear range by letting
the forces include harmonic terms that are then optimized to minimize the objective
function.

When the optimization was carried out in modal space, harmonics were only required on
the second modal force. When physical forces are transformed to modal space, the
transformation MpN"[/]TMfN is used. However, inverting this transformation using
MfN"[/T]~1MpN gives the physical force vector in terms of the modal force vector.

It was shown earlier for the 2d.o.f. example that p
1
(t) consists of a fundamental

component only, whereas p
2
(t) is made up of a series of harmonics. Thus the physical forces

will, in general, both be represented by a series of harmonics, so typically

f
1
"F

11
cosut#F

13
cos (3ut#s

13
)#2, (20)

f
2
"F

21
cos (ut#s

21
)#F

23
cos (3ut#s

23
)#2, (21)

where F
jk

and s
jk

are the amplitude and phase of the kth harmonic for the jth physical force.
F
11

is the reference force and its value is set in order to determine the amplitude level of the
excitation, in rather the same way as for P

11
in the modal space approach. The fundamental

and third harmonics were again included so the optimization in physical space for this
2d.o.f. system will now have six variables, compared to four when performed in modal
space. It might be argued that this increase in number of variables means that the method
would be more e$cient performed in modal space. However, the di!erence in number of
variables becomes less signi"cant as the number of modes and exciters increases. The issue
of maximizing the e$ciency and robustness of the non-linear appropriation method will
require further research for larger systems.

5.2. OBJECTIVE FUNCTION IN PHYSICAL SPACE

When the optimization is performed in physical space, normally for systems with more
than 2d.o.f., the objective function used in equation (19) must be modi"ed.

The Euclidean distance, or l
2

norm [26], is often used to compare two or more vectors. It
was therefore thought that this could be used to compare the deviation of the actual
response shape from the target mode shape. Each displacement response could be divided
by the relevant element from the mode shape of interest so that when the response was
exactly the same as the required mode shape, the norm would be zero. The norm for
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n transducers would then be given by

J
2
"S

+npts
i/1

(x
1i
//

1
!x

2i
//

2
)2#(x

1i
//

1
!x

3i
//

3
)2#2#(x

1i
//

1
!x

ni
//

n
)2

npts
, (22)

where /
1
, /

2
etc., are the elements of the linear mode shape vector for the target mode. This

summation is carried out over one cycle of the fundamental response component, where
npts is the number of data points per cycle and x

ki
is the kth physical displacement response

at the ith time sample. In this equation, x
1

was chosen as the reference displacement, but
any measurement point could be chosen. This objective function allows the response to
contain harmonics, but all points will respond in the proportions of the required mode
shape. The use of the modal assurance criterion (MAC) was also tried, but it was found to be
less sensitive, and therefore less e!ective, than the l

2
norm.

5.3. SIMULATED 2 d.o.f. EXAMPLE IN PHYSICAL SPACE

The objective function J
2
was used in the physical space optimization in order to enhance

the contribution of mode 1 of the 2d.o.f. system. The optimization was performed by
adjusting amplitude and phase parameters of the physical force vector, using a range of
values for the reference force F

11
. The resulting time histories were then transformed to

linear modal space for the restoring force identi"cation, using the inverse of the modal
matrix (the orthogonal properties of the modal matrix could be used instead if preferred).

The optimized physical force time histories for the highest excitation level are shown in
Figure 7, with the resulting physical displacement response time histories shown in Figure 8.
It is clear that the ratio of the two responses agrees visually with the required mode shape,
i.e., in the proportion M1 1N. The transformed modal displacement responses for modes
1 and 2 are shown in Figure 9. It can be seen that the contribution of mode 2 is signi"cantly
less than that of mode 1; the peak displacement in mode 1 is around 5]10~4 m, whereas
that for mode 2 is approximately 9]10~12 m. The modal restoring force surface for mode
1 is indistinguishable by eye from that in Figure 5 as might be expected.
Figure 7. Optimized physical input forces.
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Figure 8. Physical displacement time histories.

Figure 9. Modal displacement time histories.
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The modal restoring force time history for mode 1 was then curve "tted, and the direct
linear and non-linear estimated parameters are shown in Table 4.

It can be seen that the general level of the percentage error was reasonably low, but
results were not quite as good as the results in Table 3. This is probably because the
optimization involves more variables and is therefore more sensitive but failure to achieve
the steady state condition would also have an e!ect. The equivalent mode 2 results were
equally good.

Further simulations were performed with the natural frequencies being closer, namely 10
and 10)12 Hz as before. Results were found to be of a similar quality.

In addition to the 2d.o.f. example presented in this paper, systems with 3d.o.f., and
containing damping non-linearity, have been identi"ed. The results of these identi"cations
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TABLE 4

Parameter estimates for mode 1 for the 2 d.o.f. non-linear system-physical space
approach

Parameter True parameter Estimated parameter

k (N/m) 3974)84 3874
c (N s/m) 3)77 3)09
b (N/m3) 5)0]109 4)96]109
m (kg) 1)0 0)97
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are given in Reference [17], and generally good parameter estimates were found. An
exception was the case where a zero element appeared in one of the mode shapes for the
3d.o.f. case. If the expression for the objective function in equation (22) is considered, it is
clear that the presence of such an element will cause a &&division by zero'' in the calculation
of this objective function. A possible solution would be to replace the zero element with
a very small element; however, it can be seen that this will cause the expression for the
objective function to be very badly scaled and thus to work less e!ectively. A better solution
may be to disregard the response for any zero or very small element, enforcing the mode
shape using the remaining co-ordinates. Alternatively, some weighting chosen to be
proportional to the amplitude could be employed to suppress the e!ect of small responses.

6. COMPARISON TO CLASSICAL LINEAR FORCE APPROPRIATION

Having developed the FANS approach, how much better is it than the classical linear
force appropriation in handling the tuning and identi"cation of non-linear multi-d.o.f.
systems?

To illustrate the value of the proposed non-linear method, the classical force vector for
tuning mode 1 was derived from the Multivariate Mode Indicator Function method for
linear force appropriation [2] using frequency response function data for the 2d.o.f. system
at low excitation levels. The force vector M1 1N was then applied at the natural frequency of
mode 1 and at the same input force levels as used for the non-linear approach (note that no
harmonics were present). The resulting modal restoring forces for mode 1 were then
evaluated and curve "tted, ignoring any e!ect of mode 2. This identi"cation was carried out
at di!erent separations of the linear natural frequencies of the system; the natural frequency
of the second mode was chosen to be 10)12, 12 and 21 Hz in turn. As the frequency
separation of the modes increases, the e!ect of the non-linear modal coupling will reduce
and the application of the force vector from the linear appropriation method should
produce better results. The results for each case are shown in Table 5.

It can be seen from this table that this appropriated force vector only begins to give good
estimates for the direct linear and non-linear terms when the second linear natural
frequency is 21 Hz. In contrast, the FANS method has been found to give good parameter
estimates regardless of the frequency separation of the modes.

The inaccuracy in the parameter estimates for the system with close natural frequencies is
because the non-linear cross-coupling terms were not counteracted su$ciently by this
simple force vector. The sti!ness projection of the modal restoring force surface of mode
1 for the classical appropriation is shown in Figure 10. It can be seen that the cubic pro"le of
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TABLE 5

Parameter estimates for mode 1 for the 2d.o.f. non-linear system using a classical linear force
appropriation approach

Estimated parameters

Natural frequency Natural frequency Natural frequency
Parameter True parameter 10)00, 10)12 Hz 10)00, 12)00 Hz 10)00, 21)00 Hz

k (N/m) 3947)84 4181)20 4114)59 3961)27
c (Ns/m) 3)77 6)21 3)83 3)04
b (N/m3) 5)0]109 9)88]107 4)12]109 5)12]109
m (kg) 1)0 1)0 1)0 1)0

Figure 10. Sti!ness protection of modal restoring force surface resulting from application of appropriated force
vectors for mode one, very close modes.
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the sti!ness projection has been distorted by the presence of modal coupling terms from
mode 2 contribution to the response.

7. ESTIMATION OF NON-LINEAR COUPLING TERMS

In the previous identi"cations, only direct linear and non-linear modal terms are
identi"ed by the proposed method, since any coupling terms are counteracted when the
contribution of the coupled modes is minimized. Any signi"cant non-linear couplings for
a system could be identi"ed using a similar optimization approach.

For example, if the coupling between mode j and mode k of a system is required, then the
appropriation could be altered so as to excite both modes simultaneously, with all other
modes suppressed. Excitation could be at one or other natural frequency, or both, and the
identi"cation focused on the cross-coupling terms since the direct terms will already be
known. Such an approach would minimize the size of the identi"cation at each stage of the
test.

This combined response condition could be enforced using a modi"ed objective function.
This topic will be the subject of further research, as will be the development of a criterion to
indicate which modes are signi"cantly cross-coupled non-linearly.
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8. CONCLUDING REMARKS

In this paper, an extension of the classical linear force appropriation method has been
proposed for non-linear multi-d.o.f. systems. Using an optimization approach, a force
vector can be determined such that a target linear mode of the system will respond in
isolation by counteracting non-linear couplings to other modes. If this process is repeated at
several force levels, a restoring force surface identi"cation may be used to identify the direct
linear and non-linear terms in the equation of motion for that mode. Any signi"cant
non-linear cross-coupling terms may be identi"ed separately. The new method was
demonstrated on a 2d.o.f. non-linear system. The method was found to provide signi"cantly
better estimates than the classical method when close modes were considered.

The analysis given in this paper is restricted to weakly non-linear systems where the term
&&weak''means here that a sinusoidal force will only produce superharmonic components in
the response. In the situation, where subharmonics are present in the response, the method
presented should be applicable if the amplitudes and phases of the subharmonics are
included in the appropriated forces with coe$cients determined by the optimization. There
is an implicit assumption throughout that an acceptable degree of accuracy can be obtained
using a "nite number of terms in the force representation. In the limit of a period doubling
bifurcation, where there is essentially a continuum of subharmonics, the method will fail.

An issue that must be addressed in future concerns the stability of the solutions under
small perturbations but discussion is postponed until a later publication because the success
of the experimental study [17] lends support to the robustness of the method.
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APPENDIX: ABBREVIATIONS

DOF degrees of freedom
FANS force appropriation of non-linear systems
HFRF higher order frequency response function
MAC modal assurance criterion
NARMAX Non-linear auto regressive moving average using xogenous inputs
RFS restoring force surface
RMS root mean square
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